Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Emerg Infect Dis ; 29(3): 664-667, 2023 03.
Article in English | MEDLINE | ID: covidwho-2282638

ABSTRACT

We tested coatis (Nasua nasua) living in an urban park near a densely populated area of Brazil and found natural SARS-CoV-2 Zeta variant infections by using quantitative reverse transcription PCR, genomic sequencing, and serologic surveillance. We recommend a One Health strategy to improve surveillance of and response to COVID-19.


Subject(s)
COVID-19 , Procyonidae , Animals , Humans , SARS-CoV-2 , Brazil/epidemiology
2.
Nat Microbiol ; 7(9): 1490-1500, 2022 09.
Article in English | MEDLINE | ID: covidwho-1991610

ABSTRACT

The high numbers of COVID-19 cases and deaths in Brazil have made Latin America an epicentre of the pandemic. SARS-CoV-2 established sustained transmission in Brazil early in the pandemic, but important gaps remain in our understanding of virus transmission dynamics at a national scale. We use 17,135 near-complete genomes sampled from 27 Brazilian states and bordering country Paraguay. From March to November 2020, we detected co-circulation of multiple viral lineages that were linked to multiple importations (predominantly from Europe). After November 2020, we detected large, local transmission clusters within the country. In the absence of effective restriction measures, the epidemic progressed, and in January 2021 there was emergence and onward spread, both within and abroad, of variants of concern and variants under monitoring, including Gamma (P.1) and Zeta (P.2). We also characterized a genomic overview of the epidemic in Paraguay and detected evidence of importation of SARS-CoV-2 ancestor lineages and variants of concern from Brazil. Our findings show that genomic surveillance in Brazil enabled assessment of the real-time spread of emerging SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Brazil , Genomics , Humans
3.
Virus Evol ; 8(1): veac024, 2022.
Article in English | MEDLINE | ID: covidwho-1774420

ABSTRACT

The coronavirus disease 2019 (COVID-19) epidemic in Brazil was driven mainly by the spread of Gamma (P.1), a locally emerged variant of concern (VOC) that was first detected in early January 2021. This variant was estimated to be responsible for more than 96 per cent of cases reported between January and June 2021, being associated with increased transmissibility and disease severity, a reduction in neutralization antibodies and effectiveness of treatments or vaccines, and diagnostic detection failure. Here we show that, following several importations predominantly from the USA, the Delta variant rapidly replaced Gamma after July 2021. However, in contrast to what was seen in other countries, the rapid spread of Delta did not lead to a large increase in the number of cases and deaths reported in Brazil. We suggest that this was likely due to the relatively successful early vaccination campaign coupled with natural immunity acquired following prior infection with Gamma. Our data reinforce reports of the increased transmissibility of the Delta variant and, considering the increasing concern due to the recently identified Omicron variant, argues for the necessity to strengthen genomic monitoring on a national level to quickly detect the emergence and spread of other VOCs that might threaten global health.

4.
Infect Genet Evol ; 93: 104976, 2021 09.
Article in English | MEDLINE | ID: covidwho-1281500

ABSTRACT

The Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of an unprecedented worldwide pandemic. Brazil demonstrates one of the highest numbers of confirmed SARS-CoV-2 cases, and São Paulo State is the epicenter of the pandemics in the country. Nevertheless, little is known about the SARS-CoV-2 circulation in other cities in the State than São Paulo city. The objective of this study was to analyze phylogenetically SARS-CoV-2 strains circulating in city of Ribeirão Preto at the beginning of the pandemic and during the actual second wave. Twenty-nine nasopharyngeal SARS-CoV-2 RNA positive samples were sequenced by nanopore technology (18 obtained at the initial period of the pandemic and 11 during the second wave) and analyzed them phylogenetically. The performed analysis demonstrated that the majority of the strains obtained in the initial period of the pandemic in Ribeirão Preto belonged mainly to the B1.1.33 lineage (61.1%), but B.1.1 (27.8%) and B.1.1.28 (11.1%) lineages were also identified. In contrast, the second wave strains were composed exclusively by the Brazilian variant of concern (VOC) P.1 (91%) and P.2 (9%) lineages. The obtained phylogenetic results were suggestive of successive SARS-CoV-2 lineage substitution in this Brazilian region by the P.1 VOC. The performed study examines the SARS-CoV-2 genotypes in Ribeirão Preto city via genomic surveillance data. The obtained findings can contribute for continuous long-term genomic surveillance of SARS-CoV-2 due to the accelerated dynamics of viral lineage substitution, predict further waves and examine lineage behavior during SARS-CoV-2 vaccination.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2/genetics , Adult , Brazil/epidemiology , COVID-19/virology , Evolution, Molecular , Female , Genome, Viral , Humans , Male , Middle Aged , Phylogeny , SARS-CoV-2/isolation & purification
5.
Emerg Microbes Infect ; 9(1): 1824-1834, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-684732

ABSTRACT

The recent emergence of a coronavirus (SARS-CoV-2), first identified in the Chinese city of Wuhan in December 2019, has had major public health and economic consequences. Although 61,888 confirmed cases were reported in Brazil by 28 April 2020, little is known about the SARS-CoV-2 epidemic in this country. To better understand the recent epidemic in the second most populous state in southeast Brazil - Minas Gerais (MG) - we sequenced 40 complete SARS-CoV-2 genomes from MG cases and examined epidemiological data from three Brazilian states. Both the genome analyses and the geographical distribution of reported cases indicate for multiple independent introductions into MG. Epidemiological estimates of the reproductive number (R) using different data sources and theoretical assumptions suggest the potential for sustained virus transmission despite a reduction in R from the first reported case to the end of April 2020. The estimated date of SARS-CoV-2 introduction into Brazil was consistent with epidemiological data from the first case of a returned traveller from Lombardy, Italy. These findings highlight the nature of the COVID-19 epidemic in MG and reinforce the need for real-time and continued genomic surveillance strategies to better understand and prepare for the epidemic spread of emerging viral pathogens..


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Genome, Viral , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Adult , Aged , Brazil/epidemiology , COVID-19 , Female , Geography , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2 , Whole Genome Sequencing , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL